Chapter 2: Choice Models (Part 1)

Del Granado et al. (2018)

Example: Daily activity-travel pattern of an individual. Source: Chandra Bhat, “General introduction to choice modeling”
Image source: supplychain247.com
https://openai.com/research/learning-to-summarize-with-human-feedback
\[ y_{ni} = \begin{cases} 1, & \text{if } U_{ni} > U_{nj} \ \forall j \neq i \\ 0, & \text{otherwise} \end{cases} \]
\[ U_{ni} = H_{ni}(z_{ni}) \]
Binary choice with individual attributes
Binary choice with individual attributes
Utility is linear function of variables that vary over alternatives
Utility is linear function of variables that vary over alternatives
\[ \begin{cases} U_{n1} = \beta z_{n1} + \epsilon_{n1} \\ U_{n2} = \beta z_{n2} + \epsilon_{n2} \\ \epsilon_{n1}, \epsilon_{n2} \sim \text{iid extreme value} \end{cases} \] \[ \Rightarrow \quad P_{n1} = \frac{\exp(\beta z_{n1})}{\exp(\beta z_{n1}) + \exp(\beta z_{n2})} = \frac{1}{1 + \exp(-\beta (z_{n1} - z_{n2}))} \]
Utility for each alternative depends on attributes of that alternative
Utility for each alternative depends on attributes of that alternative
Capturing correlations across alternatives
\(Pr(\text{choosing 1}) = Pr(U_n < a) = Pr(\epsilon < a - \beta z_n) = \frac{1}{1 + \exp(-(a - \beta z_n))}\)
\(\begin{aligned} Pr(\text{choosing 2}) &= Pr(a < U_n < b) = Pr(a - \beta z_n < \epsilon < b - \beta z_n) \\ &= \frac{1}{1 + \exp(-(b - \beta z_n))} - \frac{1}{1 + \exp(-(a - \beta z_n))} \end{aligned}\)
\(...\)
\(Pr(\text{choosing 5}) = Pr(U_n > d) = Pr(\epsilon > d - \beta z_n) = 1 - \frac{1}{1 + \exp(-(d - \beta z_n))}\)
\[Pr(\text{ranking } 1, 2, \dots, J) = \frac{\exp(\beta z_1)}{\sum_{j=1}^{J} \exp(\beta z_{nj})} \cdot \frac{\exp(\beta z_2)}{\sum_{j=2}^{J} \exp(\beta z_{nj})} \cdots \frac{\exp(\beta z_{J-1})}{\sum_{j=J-1}^{J} \exp(\beta z_{nj})}\]
“Should you take CS 329H or not?”
“Should you take CS 329H or CS 221 or CS 229?”

Chapter 2.1: Choice Models